旅行者离地球百亿公里,为何还能操控?距离那么远,还有信号吗?

玩过遥控飞机的朋友都知道玩这行比较危险,其一是速度比较高,螺旋桨很锋利,万一伤到人可是大事!其二则可能会炸机,啥意思呢?就是信号不好或者操作不当,航模坠毁!

那些飞向太空的探测器,它们动辄在成百上千的近地轨道上,甚至远达数亿或者上百亿千米的距离,它们又是怎么保证不“炸机”的呢,万一失控又怎么抢救回来呢?

旅行者一号,深空测控通信是怎么保证的?

无线电通信的原理很简单,将声音文字、数据或者图像等信号调制在无线电波中,传输到远方,在通过解码的方式还原,这就成了我们所熟悉的无线电通信!最早的无线电噪音干扰很大,所以摩尔斯将字母用长短音编码的方式防止误码,接收后再按摩尔斯电码还原,其实这应该算是最早的数字通信!

数字通信

现在我们用的还是数字通信,只是频率和编码以及载波方式上有了很大的差别,数字通信用001100的方式来对抗干扰,因此现代通信中模拟通信已经非常少见,数字通信还有容量大的优点。

深空测控,光有编码优势是不够的

大家可能都听说过深空测控网,简单的说就是在地球各个点都建立通信网络,保证在任何时刻都有至少一座天线对着探测器,因为地球会自转,如果考虑到地平线以及大气层衰减的话,必须要三座天线才能保证赤道上360度覆盖,假如要保证南北半球的话,那么可能还要多布置几座或者优化布置位置!

美国的深空测控网

DSN(Deep Space Network)是NASA设置在美国(加洲)、西班牙(马德里)和澳大利亚(堪培拉)的深空测控网络,为NASA的星际航天器提供导航与航天通信服务,由于深空测控天线也可以作为射电望远镜使用,因此也担任射电天文学观测和太阳系内雷达行星天文学研究!

各国深空测控站点全球分布

在这些测控网中,直径30-40米的天线比比皆是,甚至最大有达到60-70米的深空天线!天线配置如下:

戈尔德斯通深空站:位于美国加州的莫哈维沙漠。运行中有1个70m天线、3个34m波束波导(BWG)天线,正在新建1个34m BWG天线。

马德里深空站:位于西班牙首都马德里以西60km。目前在运行的有1个70m天线,1个34m高增益天线,2个34m波束波导天线,另有2个34m波束波导天线在建。

堪培拉深空站:位于澳大利亚首都堪培拉西南40km。运行中有1个70m天线,3个34m波束波导天线,有1个34m波束波导天线在建。

在全球深空测控网中,美国的测控网络分布位置是最佳的,北半球两个,南半球一个,而且大致分布在120度的位置上,兼顾了南北半球,当然这也是美国在全球的实力表现,可以调动全球资源!

旅行者的通信天线

旅行者一号是人类发射的、距离地球最远的航天器,截止到今天为止,它已经飞行了大约150.268天文单位,大约225.4亿千米,通讯延迟时间大约为20小时52分钟!具体见下图:

旅行者一号和二号的相关信息

旅行者系列一开始就被设计用来飞向太阳系外,因此一个小小的探测器(825.5千克)上搭载了一个3.7米的高增益抛物面天线!

它是到1977发射时最大的星载通信天线。旅行者的通信系统受到水手号和海盗号探测器的影响,做了如下改动:

首次使用X频段而不是S频段作为主要的下行遥测链路;

采用双输出功率的X频段TWTA,最大发射功率18W,设计用来减小质量、使效率最大化,且工作时间超过50000h

旅行者一号通常以2.3 GHz或8.4 GHz的频率在深空网络通道18中传输数据,而从地球到旅行者的信号则以2.1 GHz发送,但几个深空测控站对旅行者通信是有限制的,比如旅行者二号位于南天区,北半球的两个站点能跟踪,但无法通信链路,因此测控与数据下载主要由堪培拉的测控站来完成。而一号则刚好相反!

三个测控站的布局和组成

当然再牛逼的深空测控网对旅行者电池耗尽也无计可施,由于旅行者一号的核电池衰减,它已经无法支撑太多的仪器工作,到现在为止,旅行者一号就只能当个信标了,二号还可以下载些数据,比如日球层的相关信息。

旅行者搭载的设备工作状态

深空探测有“炸机”的案例吗?又是怎么抢救回来的?

深空测控失败的案例其实挺多,比如2016年3月14日发射的斯基亚帕雷利火星登陆器,在2016年11月19日登陆火星途中失去联系,不知下落!但“炸机”后被找回来的案例却不多,其中就有最为经典的丝川小行星登陆取样返回的“隼鸟一号”!

丝川小行星

隼鸟号是2003年5月9日发射的小行星探测器,2005年12月9日,在丝川小行星附近因燃料泄漏,姿态失控造成通讯中断(要保持联系,抛物高增益通信天线必须指向地球,全向天线增益太低,根本无法通信)。

隼鸟采样中

原本JAXA以为此次任务已经失败时,却从隼鸟号传来了信号,只是这个信号断断续续,JAXA分析隼鸟号探测器正在翻滚中,但有一段时间抛物面天线是指向地球的,因此根据这短短的时间,分析姿态,注入指令,将隼鸟号从翻滚的状态拯救了回来!

隼鸟号的离子发动机

由于隼鸟号任务多次波折,因此错过了第一次返回,隼鸟号只能等到在返回轨道下一次和地球相交时,终于在2010年6月13日成功返回地球,带回一丢丢肉眼无法见到的丝川小行星尘埃!

喜欢深空探测和离子发动机的朋友可以看看《隼鸟号》,这部电影尽管有些拖沓,但整体上来看还是不错的,仅当科学纪录片来看吧!