几何为万物赋能——建筑、医疗、动漫、游戏……(上)

顾险峰,美国纽约州立大学石溪分校计算机系终身教授,哈佛大学数学科学与应用中心兼职教授。曾获美国国家自然科学基金CAREER奖,有华人菲尔茨奖之称的晨兴应用数学金奖等。他是国际著名微分几何大师菲尔茨奖得主丘成桐先生的得意门生,在丘先生的指导下,将抽象的现代几何与拓扑理论转化成实用的计算方法。创立了横跨数学与计算机科学的学科计算共形几何,并广泛应用于计算机图形学、计算机视觉、计算机辅助设计、物联网、医学影像,和人工智能等领域。

计算机专业,几十年没有发展,核心就是基础的数学理论没有看清楚,很多事是几何理论没有看清楚。有的理论得到了飞速发展,是因为终于有一个几何理论取得了突破,将现代数学的这个思想方法引入到这个理论里面。

从小处说,计算机非常好玩、非常强有力,甚至可以说计算机能改变世界。数学非常优美、非常深刻,如果能领悟到其中一些原理,作为凡夫俗子,这是最切实可行的方法让我们可以真正体会到宇宙的真理,得到宇宙永恒的精神。哪怕我们了解一些皮毛,也能够更多地理解宇宙的真谛,这是多么深奥的一个话题。

几何是自然界的语言,最深刻的几何原理,也是人类最能审美的一个方向。所以,越深刻的几何原理,人类通过直觉越容易领会到。今天这里,我们不讲数学公式,所有东西都用艺术,或者是其他比较浅显的方式来讲解。

艺术和数学几何的结合

建筑设计中的数学几何原理:大兴国际机场

北京的大兴国际机场,被称为世界七大奇迹之首,耗资800亿。它的造型非常地瑰丽,气势非常宏伟,像一个凤凰一样。这个建筑是国际著名建筑师--女魔头扎哈·哈迪德设计的。哈迪德本身是学数学出身,她创立了一个新的学派。这个学派最大的特点就是,用黎曼几何,来取代欧式几何。

欧式几何,就是说地是平的,墙是直的,窗户都是正方形的,看起来非常地中规中矩。而哈迪德,把一切变成了曲面,在曲面上设计非常复杂的曲线,她由此也被称为了——曲线之王。


我们通过哈迪德的建筑设计,可以体会到很深的一些数学原理。如果我们从空中鸟瞰大兴机场的棚顶结构,有一个非常漂亮的六芒星的结构。建筑上有很多非常光滑的曲线,实际上看它内部的钢架结构,里面有两族彼此垂直的曲线结构。这个形态非常优美,而它在几何中是对应一个非常深刻的数学概念,叫做叶状结构。为什么要设计成这种结构呢?这种叶状结构,在曲面上是无处不在的。

建筑设计-曲面叶状结构

这边我们画一个非常常见的一个兔子的模型,在上面有两族叶状结构,一族是蓝色的,另一族是红色的,处处彼此垂直,把这个曲面非常均匀地分成了四边形网格。在建筑设计中,每个四边形网格,可以对应一块玻璃,或者一个钢架结构。

这个结构在自然界中,是无处不在的,它也是异常优美的。扎哈,她不见得理解这套数学理论,但是通过单纯的审美,她把这个这套数学结构,用到她的建设设计之中。我们回头再来看大兴机场内部的钢架结构,从本质上讲,它得到了两族调和的叶状结构,结构中间存在一个稳定的奇异点。

所以大兴机场,其实非常完美地体现了艺术和数学的结合。

三维扫描技术

在过去的10年里,计算机科学领域最大的一个突破点,就在三维技术上。人们可以非常容易地得到三维的数据结构。


我们用三维扫描,可以得到一个人脸的模型。这里用结构光的方法进行扫描,扫描速度非常快,解析度也非常高。我们可以看到他动态的表情变化,每一帧,有差不多50万个采样点。这样可以得到非常迅速的、大规模的三维数据的采集。

通过扫描撒贝宁先生的脸,得到了非常完美的纹理和几何

从今天来看,三维扫描的技术,已经非常成熟。我们瞬间可以得到大量的三维数据,但是现在整个瓶颈变成了软件。我们如何来处理这些非常难以处理的三维的数据,现在是非常具有挑战性的问题。

应用计算机传统的,线性代数,我们只是能处理平直空间的问题。对于曲面的话无能为力,因此我们必须要引入现代的微分几何和共形几何。

文艺作品中的数学几何原理

这些概念比较深刻,我们先用艺术家的观点来解释。

有一个特别知名的荷兰画家叫埃舍尔。他一辈子创作了大量的将数学和艺术结合的画作。这幅图画就是他的一个非常有名的画作,叫做《画廊》。

似幻还真,画中的虚拟世界和现实世界融为一体

左侧有一个男青年,他站在画廊之中,看墙上的一幅画。这幅画画了一条河,河里有一艘船,河对岸是一个画廊。这个画廊中也有一个男青年,在看墙上的一幅画,那幅画上是什么呢?有一条河,河对岸有个画廊。所以它实际是一个无穷嵌套的结构。

左侧,这个画廊是真实世界的画廊,而图上的画廊是虚假的画廊。

在右侧,真实的世界,和虚拟的世界融为一体。从虚假世界融入到真实世界。

这幅画在历史上非常有名,激发了很多后来的艺术工作。比如说大家熟知的《盗梦空间》还有《骇客帝国》,本质思想就是把虚拟和现实融为一体。

那么这幅画作的数学原理究竟是什么?中间这个奇异点内部究竟发生了什么?

其实,变换虽然非常剧烈,但是局部的形状,没有发生变化,所以这种变换有一个特殊的名字,叫做共形变换。共形的意思就是局部保持形状。

(平面共形变换:局部保持形状,整体剧烈变化)

(曲面间的共形变换:弯曲展平直,三维变二维,降维攻击,局部保形)

右边的图由左边照片处理而得,图片整体发生扭曲,但局部物品的形状并未发生形变(局部保持形狀,整体剧烈变化)

共形变换与一般变换的比較

刘慈欣的《三体》有一个非常厉害的文明,叫歌者文明。后来歌者文明决定毁灭太阳系,毁灭的方式是发来一个二向箔。二向箔飘到太阳系之后,把整个太阳系三维的空间变成二维。整个流入到二向箔里面,这就是所谓的降维攻击。降维攻击的意思就是,把高维变到低维。

这是米开朗基罗的一个大卫头,我们将这个大卫头三维的曲面平展到二维的平面上,这样就把三维变成了二维,把弯曲的空间变成了平直的空间。

我们看它所有的细节,大卫头的眼睛和耳朵映到平面保持没有发生改变,非常复杂的头发映过来也没有发生改变。刘慈欣作为一个作家,他用非常瑰丽的想象,想象出降维攻击实际上在几何上的确存在。

通过保角变换我们的确可以实现降维,把三维变成二维。极大地简化了计算问题。在微分几何和共形几何中,有一个非常深刻的定理,我个人觉得也是整个几何界的具有奠基性的一个基本定理叫大一统定理。

(大一统定理:克萊因、龐家萊單值化:任意度量曲面都可以共形地映射到球面、歐式平面或者雙曲曲面上。)

根据这个定理,所有的曲面都可以在保角的变换下变成三种标准几何中的一种或者变成球面或者变成欧式空间或者变成双曲空间。

大一统定理的含义非常深远,它能说明从你当下所处的地方一直到宇宙的边缘,所有三维实体的表面都是曲面。所有的曲面无论多么复杂,无论怎么千变万化,最后都会归结为三种中的一种,万宗归一。

游戏、动漫中数学几何的运用

有了这个大一统定理之后,我们生活中怎么具体来应用?从大量的实例来看,这些深刻的数学理论在现实生活中是非常有用的。

电子游戏

电子游戏,人人都爱,电子游戏最大的一个突破叫纹理贴图。纹理贴图怎么解释呢?

在游戏公司里,有两种艺术家。一种艺术家是做雕塑的,比如我们大家看到上图中的白模,白色的雕塑。另外一类艺术家,他们是为这个雕塑涂上颜色,画出皮肤、画出纹理、画出铠甲的。第二类艺术家只能在平面上进行作画,这就需要一个技术,就是把平面的图画贴到三维的曲面上并且使它畸变尽量地减少。比如说我们在平面上画上大理石的纹路,然后把这大理石的纹理贴到这个大卫头上,得到的就是下图这种大理石雕塑的感觉。

在纹理贴体图技术发明之前,整个计算机图形学发展得非常的原始。所渲染的物品,看起来非常的不真实。正是因为这个技术的发展,使得游戏,还有动漫产业变得非常普遍。

但是也遇到一个矛盾,如果我们想打一个非常复杂的游戏,那要保证它渲染的速度。如果游戏的几何体过于复杂,三角面片太多,速度就会特别慢。一方面你想得到非常精细的法向量的信息,一方面又想使数据量减少。如何解决这个矛盾呢?

在图形学中有一个技术,叫做法向贴图。就是说我们把这个曲面摊平,摊到平面上。然后我们可以看到,每个Pixel,有3点,有3个颜色,红绿蓝。用这个红绿蓝,代表法向量的XYZ。法向贴图可以非常细腻,但是几何可以特别粗糙。这样就同时兼顾了渲染的法向量的效果,又减少了数据量,提高了整个运算速度。所以法向贴图也是整个电子游戏界,一个非常基本的技术。

这里最难的就是,如何保证把三维的复杂曲面印到二维平面上来,同时使得每个区域可以按照你的要求放大或者缩小。比如说我们想放大这个怪兽的翅膀范围,如何使得这个翅膀变得比较大。如果我们想突出某个部分,使这个部分比较大,这后边用到很深刻的几何原理。大家天天都在打的电子游戏,最深层的研发和设计是用到非常深刻的数学原理的。

人脸曲面配准

在安防领域,也用到大量的计算机视觉的知识。三维人脸识别、三维人脸注册,非常普遍用到的数学几何原理。

给定两张三维人脸,如何在他们之间,建立比较好的一一映射?我们的方法就是把三维人脸,用黎曼映照,映到二维的圆盘上。这样通过降维攻击,就把这三维问题变成了二维问题。二维问题,会简化非常多。

三维几何问题转换成二维图像问题

比如说我们要把这个男孩的这张脸映到女孩这张脸。那么第一步,我们可以用一些机器学习的方法,找到人脸上的特征点,比如眼角、鼻窝还有鼻尖,然后使特征点对齐。第二步,使得整个的畸变达到最小。使畸变最小这个映射,被称为泰希米勒映射。

畸变由什么决定呢?是由两族Foliation(叶状结构)决定,调和叶状结构决定。换句话说,这个映射后边蕴藏的数学,和大兴机场蕴藏的数学是一致的。

那么为什么我们要得到非常精细的映射呢?主要是为了做精准医疗。欧美的白人他们祖先生活在寒带,所以他的基因中缺乏抵御紫外线的功能。所以对于白人来讲,非常容易得皮肤癌,也就是所谓的黑色素瘤。黑色素瘤非常小,肉眼几乎不可见,低于毫米。如果用人工去筛查这个黑色素瘤就会非常痛苦。我们就发明这种方法,同一个人每隔一年扫描一次,然后精细地筛查在皮肤上逐点比较看哪一点皮肤发生突变。这样可以非常自动地找到这个黑色素瘤。所以我们可以看到,计算机视觉在医学上也有很深的应用。

动漫

动漫领域,这些方法也有很好的应用。在动漫电影中,动作捕捉和表情捕捉是非常关键的技术。比如武打片的动作捕捉,就是要得到各个关节的信息。但是动作捕捉非常容易,因为人的关节只有几十个,表情捕捉却非常难,表情的自由度有无穷多个。所以现在整个动漫产业,最困难的就是表情捕捉。那么怎么进行表情捕捉呢?

我们把动态的三维人脸,通过黎曼映照映到二维的圆盘上,然后用刚才的方法可以建立帧与帧之间的一一映射。

把一张蓝色的四边形网格贴到第一张脸上,那么它依随这个人脸的变化而变化。这个蓝色网格上每一个点会得到三维空间中的一条轨迹,这个轨迹就代表了这个表情的信息。我们可以把这表情信息拿出来,去移植到其他的卡通人物身上。

这是我们做的一个实验。把三维的人脸表情拿下来,然后进行表情捕捉。这样,我们就建立一个虚拟演员的概念。

现在小鲜肉拍摄非常非常昂贵。那么我们是不是可以把他的所有的表情以三维的方式记录下来,然后导演来决定,到哪一个情节、哪一个台词,用什么表情,从数据库中给它取出来。如果这样,我们不需要这个演员真正来出演,只需要得到他的数字版权就可以。

在这边我们找了一个演员,把他的一些标准表情给数字化,然后做了下面一个非常小的一个电影片段。这边的整个场景是假的,是用Maya(三维动画)做的。人也是假的,表情也是假的。所以我们相信虚拟演员这个技术,未来可以在VR、AR中很大地普及。

在虚拟现实、增强现实中,数据压缩是一个非常关键的问题。比如我们为了表达一张老人的脸,饱经沧桑、满布皱纹,需要大量的几何信息。如果要通过无线网络来传递这个信息,或者是本身硬件性能比较差,渲染速度就非常慢。如何来压缩这个复杂的几何信息是一个非常关键的问题。

用刚才的大一统定理,我们把一个老人头映到平面的圆盘,然后再控制每个区域在平面上的大小。比如说它曲率比较高的地方,皱纹比较高的地方,让它在平面的区域变得比较大。

比如这幅图,我们在平面上采样,采样之后在平面上重新进行三角剖分得到这个简化的模型。这边如果我们只用2000个这个采样点,得到的是左侧这张人脸。如果用4000的话得到右侧这张人脸。所以增加采样率,可以使得图像几何的特征越来越细腻。这样就可以求得一个渲染的质量和这个所谓的空间的存储一个很好的一个平衡。这是在VR、AR中几何压缩的一个应用。

(未完待续,请看下)

本文经授权转载自微信公众号“世纪大讲堂”。

《返朴》,科学家领航的好科普。国际著名物理学家文小刚与生物学家颜宁共同出任总编辑,与数十位不同领域一流学者组成的编委会一起,与你共同求索。关注《返朴》参与更多讨论。二次转载或合作请联系返朴公众号后台。